Unusual structural and electronic properties of porous silicene and germanene: insights from first-principles calculations
نویسندگان
چکیده
Using first-principles calculations, we investigate the geometric structures and electronic properties of porous silicene and germanene nanosheets, which are the Si and Ge analogues of α-graphyne (referred to as silicyne and germanyne). It is found that the elemental silicyne and germanyne sheets are energetically unfavourable. However, after the C-substitution, the hybrid graphyne-like sheets (c-silicyne/c-germanyne) possess robust energetic and dynamical stabilities. Different from silicene and germanene, c-silicyne is a flat sheet, and c-germanyne is buckled with a distinct half-hilled conformation. Such asymmetric buckling structure causes the semiconducting behaviour into c-germanyne. While in c-silicyne, the semimetallic Dirac-like property is kept at the nonmagnetic state, but a spontaneous antiferromagnetism produces the massive Dirac fermions and opens a sizeable gap between Dirac cones. A tensile strain can further enhance the antiferromagnetism, which also linearly modulates the gap value without altering the direct-bandgap feature. Through strain engineering, c-silicyne can form a type-II band alignment with the MoS 2 sheet. The combined c-silicyne/MoS 2 nanostructure has a high power conversion efficiency beyond 20% for photovoltaic solar cells, enabling a fascinating utilization in the fields of solar energy and nano-devices.
منابع مشابه
Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices
Superlattice provides a new approach to enrich the class of materials with novel properties. Here, we report the structural and electronic properties of superlattices made with alternate stacking of two-dimensional hexagonal germanene (or silicene) and a MoS2 monolayer using the first principles approach. The results are compared with those of graphene/MoS2 superlattice. The distortions of the ...
متن کاملStability and Electronic Properties of Two-Dimensional Silicene and Germanene on Graphene CHIH-PIAO CHUU,
Submitted for the MAR14 Meeting of The American Physical Society Stability and Electronic Properties of Two-Dimensional Silicene and Germanene on Graphene CHIH-PIAO CHUU, YONGMAO CAI, C.-M. WEI, M.-Y. CHOU, Academia Sinica — Recently, there have been experimental attempts to synthesize silicene, a two-dimensional (2D) graphene-like form of silicon on metal surfaces such as Ag(111) and Ir(0001)....
متن کاملThe electronic and magnetic properties of functionalized silicene: a first-principles study
Based on first-principles calculations, we study the structural, electronic, and magnetic properties of two-dimensional silicene saturated with hydrogen and bromine atoms. It is found that the fully saturated silicene exhibits nonmagnetic semiconducting behavior, while half-saturation on only one side with hydrogen or bromine results in the localized and unpaired electrons of the unsaturated Si...
متن کاملThe structural and density state calculation of B Nitrogen doped silicene nano flake
In this paper, we study the effect of single Boron/Nitrogen impurityatom on electronic properties of a silicene nano flake. Our calculations are basedon density functional theory by using Gaussian package. Here, one Si atom insilicene nano flake substitutes with a Boron/Nitrogen atom. The results show thatsubstitution of one Si atom with single Boron/Nitrogen atom increases distanceof impurity ...
متن کاملTensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene.
Based on first principles calculations and self-consistent solution of the linearized Boltzmann-Peierls equation for phonon transport approach within a three-phonon scattering framework, we characterize lattice thermal conductivities k of freestanding silicene, germanene and stanene under different isotropic tensile strains and temperatures. We find a strong size dependence of k for silicene wi...
متن کامل